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Knowledge-enhanced NLG (Overall)

Knowledge-enhanced 
NLG Methods

Internal Knowledge-
enhanced Methods

External Knowledge-
enhanced Methods

Internal knowledge creation takes place within the input text(s)

External knowledge acquisition occurs when knowledge is 
provided from outside sources
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Topic-enhanced NLG methods

• Each topic is a 
distribution over 
words.

• Each document is a 
mixture of corpus-
wide topics

• Each word is drawn 
from one of those 
topics

• Topic, which can be considered as a representative or compressed form of text, has 
been often used to maintain the semantic coherence and guide the NLG.

LDA topic modeling
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Topic-enhanced NLG methods
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Topic-enhanced NLG methods

• Dialogue system. A vanilla Seq2Seq often generates trivial response, such as “I do 
not know”, “I see”. These responses are boring with very little information, quickly 
leading the conversation to an end.

• Machine translation. Though the input and output languages are different the 
contents are the same, and globally, under the same topic. 

• Paraphrase. Naturally, paraphrases concern the same topic, which can serve as an 
auxiliary guidance to promote the preservation of source semantic.

Important applications
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Topic-enhanced NLG methods

• Topic Aware Neural Response Generation, In AAAI 2017

• Application: Dialogue system

• Motivation: natural and fluent           informative and interesting

You haven’t been given an assignment in this case

I don’t know what you are talking about

You programmed me to gather intelligence. 
That’s all I’ve ever done.

I see.

Figure: Two generated responses from a vanilla Seq2Seq model
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Topic-enhanced NLG methods

• Topic Aware Neural Response Generation, In AAAI 2017
• Solution: extract topic from input -> incorporate topic into Seq2Seq

Figure: Proposed framework of topic-enhanced Seq2Seq model

Text Encoder Topic Encoder
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Topic-enhanced NLG methods

• Topic Aware Neural Response Generation, In AAAI 2017

• Dataset: Baidu Tieba (not public);   Metric: Perplexity ↓; Distinct-k ↑

• Distinct-k measures the total number of unique k-grams in the entire corpus. 
• The higher distinct-k indicates higher diversity (more unique k-grams are generated)

w/o
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Topic-enhanced NLG methods

• Topic Aware Neural Response Generation, In AAAI 2017

• Dataset: Baidu Tieba (not public);   Metric: Perplexity ↓; Distinct-k ↑
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Topic-enhanced NLG methods

• Topic-Guided Variational Autoencoders for Text Generation, In NAACL 2019

Motivations: 
• (1) LDA models may fail to find proper topics that the NLG task requires.
• (2) LDA models are separated from the training process of generation, so they cannot adapt 

to the diversity of dependencies between input and output sequences.
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Topic-enhanced NLG methods

• Topic-Guided Variational Autoencoders for Text Generation, In NAACL 2019
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Topic-enhanced NLG methods

• Topic-Guided Variational Autoencoders for Text Generation, In NAACL 2019

VAE: RNN with variational autoencoder; HF: householder flow; TGVAE: topic guided variational autoencoder
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Topic-enhanced NLG methods (discussion)

• Advantages and disadvantages of different topic-enhanced methods

• LDA topic

• Neural topic

Pros: LDA has a strict probabilistic explanation with great interpretability 
Cons: LDA models are separated from the generation training process 

Pros: They enable back propagation for joint optimization, contributing to 
more coherent topics, and can be scaled to large data sets.
Cons: topic distribution is assumed to be an isotropic Gaussian, which makes 
them incapable of modeling topic correlations.
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Keyword-enhanced NLG methods

• Keyword (aka., key phrase, key term) is often referred as a sequence of one or more 
words, providing a compact representation of the content of a document.

LDA is based on a 
generative probabilistic 
model that associates a 
topic with a distribution 
over set of words, but 
those words would not 
normally be considered 
“keywords” in any way.
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Keyword-enhanced NLG methods

• Keywords-Guided Abstractive Sentence Summarization, In AAAI 2020

• Applications: 

Vanilla Seq2Seq: hard to control and often misses salient information. 

Keyword: provide significant clues of the main points about the document. 

Summarization
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Keyword-enhanced NLG methods

• Keywords-Guided Abstractive Sentence Summarization, In AAAI 2020
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Keyword-enhanced NLG methods

• Keywords-Guided Abstractive Sentence Summarization, In AAAI 2020
• Dataset: Gigawords Metric: ROUGE score
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Linguistic feature-enhanced NLG methods

• Why does linguistic features include?
• Lemma; POS tag; NER tags; dependency parsing; semantic parsing

• How to include linguistic features into NLG?
• Fused encoder (often used for POS tags, NER tags -> See below figure)
• Separate encoder (often used for dependency graphs -> GNN)

Entity Types leak more information than we think
• Accurate contexts depend on the type of word

Newark Say hello to Newark for me!

I just arrived at Newark.

Newark Say hello to Newark for me!

I just arrived at Newark.

(Name)

(Location)
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Linguistic feature-enhanced NLG methods

• Entity Types serve as a guide to generate more accurate context words.

concatenation

US
Dick_
Cheney

Afgha-
nistan

Monday

US Dick_Cheney Afghanistan

COUNTRY PERSON COUNTRY

+ + +
>

…

vice president made a visit to on …

Encoder Decoder
…

Type concatenation
(Existing Work) 

Concatenating entity mention and type embeddings is a straightforward way to use type information.



Linguistic feature-enhanced NLG methods

• Injecting Entity Types into Entity-Guided Text Generation, In EMNLP 2021
• Application: Word-to-text generation, News generation

ENT ENT ENT ENT …

US Dick_Cheney Afghanistan

COUNTRY PERSON COUNTRY

+ + +

>

…

US Dick_Cheney Afghanistan Monday

vice president made a visit to on

WEEKDAYCOUNTRYPERSONCOUNTRY

Type
injection

Mention
predictor

Encoder Decoder
…

Type injection
(Our Work) 

（1）

（2）

（3）

（4）

Steps: (1) predicting the <Ent> token (i.e., entity indicator)  (2) injecting the entity types (3) predicting the entity mention

using the type embedding and hidden state by a mention predictor  (4) combine with an entity enhanced NLU module
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Linguistic feature-enhanced NLG methods

• Injecting Entity Types into Entity-Guided Text Generation, In EMNLP 2021
• Dataset: Gigaword, New York times; Metric: ROUGE ↑; BLUE ↑
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KG-enhanced text generation methods

• Knowledge graph (KG), as a type of structured human knowledge consisting of entities†, 
relations, and semantic descriptions. People can easily traverse links to discover how 
entities are interconnected to express certain knowledge.

• KG definition: A KG is defined as ! = ($, ℰ, ℛ), where $ is the set of entity nodes and ℰ
⊆ $×ℛ× $ is the set of typed edges between nodes in $ with a certain relation in the 
relation schema ℛ.
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Topic-enhanced NLG methods

• Commonsense reasoning. It often needs to exploit both structural and semantic 
information of the commonsense KG and perform reasoning over multi-hop relational 
paths, in order to augment the limited information for commonsense reasoning. 
• Dialogue system. A dialogue may shift focus from one entity to another, breaking one 

discourse into several segments, which can be represented as a linked path connecting 
the entities and their relations. 
• Creative text generation. This task can be found in both scientific and story-telling 

domains. Scientific writing aims to explain natural processes and phenomena step by 
step, so each step can be reflected as a link on KG and the whole explanation is a path. 
In story generation, the implicit knowledge in KG can facilitate the understanding of 
storyline and better predict what will happen in the next plot.

Important applications
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KG-enhanced text generation methods

• M1: KGE into NLG

[Zhou 2018 IJCAI]

• M2: KG into PLMs

[Guan 2020 TACL]

• M3: Path Reasoning

[Liu 2019 EMNLP]

[Ji 2020 EMNLP]

• M4: GNN on sub-KG

[Zhou 2018 IJCAI]

[Zhang 2020 ACL]
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KG-enhanced text generation methods

• M1: Incorporate Knowledge Graph Embeddings into NLG

• What is knowledge graph embedding (KGE)?

• Goal: KGE represents entities and relations in a low-dimensional vector space to reduce data 

dimensionality while preserving the inherent structure of the KG.

• What are the commonly used KGE methods?

• TransE: Given a KG edge !" , $, !% , the relation is seen as a translation vector $ so the 

embedded entities !" and !% can be connected with low error, namely !" + r ≈ !%.

• Example: Tokyo + IsCapitalOf ≈ Japan.
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KG-enhanced text generation methods

• M2: Transfer Knowledge into LMs with Knowledge Triplet Information

• A Knowledge-Enhanced 
Pretraining Model for 
Commonsense Story 
Generation, TACL 2020
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KG-enhanced text generation methods

• M3: Perform Reasoning over KG via Path Finding Strategies

• Path routing and ranking (PRA algrithom)
• PRA uses random walks to perform multiple 

bounded depth-first search processes to find 

relational paths on the KG, then integrate the 

path into Seq2Seq models

• Neural network based path scoring/finding



KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020

• Application: Generative commonsense reasoning (e.g., story, alpha-NLG)

• Motivation: To reason over multi-hop

relational paths where multiple conec-

ted triples provide chains of evidence 

for grounded text generation.

29
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KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020
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KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020

Encoder: R-GCN to model the 
relation type on ConceptNet
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KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020

Decoder: A reasoning module to assign 
scores for neighboring nodes
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KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020



34

KG-enhanced text generation methods

• Language Generation with Multi-Hop Reasoning on Commonsense Knowledge 
Graph, In EMNLP 2020
• Dataset: ROCStories, alpha-NLG, EG.   Metric: BLEU, METEOR, ROUGE
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KG-enhanced text generation methods

• M4: Improve the Graph Embeddings with Graph Neural Networks.

• KG definition: A KG is defined as ! = ($, ℰ, ℛ), 
where $ is the set of entity nodes and ℰ ⊆ $×ℛ× $
is the set of typed edges between nodes in $ with a 
certain relation in the relation schema ℛ.

• Graph neural network (GNN):
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KG-enhanced text generation methods

• Commonsense Knowledge Aware Conversation Generation with Graph Attention, 
In IJCAI 2018
• Application: Dialogue system
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KG-enhanced text generation methods

• Commonsense Knowledge Aware Conversation Generation with Graph Attention, 
In IJCAI 2018
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KG-enhanced text generation methods

• Commonsense Knowledge Aware Conversation Generation with Graph Attention, 
In IJCAI 2018

Encoder: word embedding from text + entity embedding from KG
* Only one-hop relation is used in this work
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KG-enhanced text generation methods

• Commonsense Knowledge Aware Conversation Generation with Graph Attention, 
In IJCAI 2018

Decoder: encoder-decoder attention + knowledge graph attention
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KG-enhanced text generation methods

• Commonsense Knowledge Aware Conversation Generation with Graph Attention, 
In IJCAI 2018

• Dataset: Reddit-1M + ConceptNet Metric: Perplexity ↓; Entropy ↑
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KG-enhanced text generation methods

• Grounded Conversation Generation as Guided Traverses in Commonsense 
Knowledge Graphs, In ACL 2020.

• Application: Dialogue system
• Motivation: Concept shift in human conversations has not been modeled.

outer graph
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KG-enhanced text generation methods

• Grounded Conversation Generation as Guided Traverses in Commonsense 
Knowledge Graphs, In ACL 2020
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KG-enhanced text generation methods

• Grounded Conversation Generation as Guided Traverses in Commonsense 
Knowledge Graphs, In ACL 2020
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KG-enhanced text generation methods

• Grounded Conversation Generation as Guided Traverses in Commonsense 
Knowledge Graphs, In ACL 2020

• Dataset: Reddit-1M + ConceptNet;    Metric: BLEU; Nist; ROUGE

Table: Relevance Between Generated and Golden Responses.



45

KG-enhanced text generation methods

Table: Tasks, datasets and KG sources used in different KG-enhanced papers.

Observation 1: KG makes largest improvement on commonsense reasoning tasks

Observation 2: ConceptNet is the most popular used KG. 

Dataset and code links: https://github.com/wyu97/KENLG-Reading
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KG-enhanced text generation methods

M1 (Incorporate Knowledge Graph Embeddings into 
Language Generation):
• Pros: (i) Easy to use (by simple vector concatenation)
• Cons: (i) Text representation and KG representation are 

from two vector space
(ii) KGE can only capture one-hop relations

M2 (Transfer Knowledge into Language Model with 
Knowledge Triplet Information): 
• Pros: (i) Easy to use (train with any pre-trained LM)

(ii) KG knowledge is embedded into LMs
• Cons: (i) Only capture one-hop relations
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KG-enhanced text generation methods

M3 (Perform Reasoning over Knowledge Graph via Path 
Finding Strategies.):
• Pros: (i) Multi-hop reasoning

(ii) Better interpretability 
• Cons: (i) Only one path is considered 

(ii) Large complexity and hard to train

M4 (Improve the Graph Embeddings with Graph Neural 
Networks):
• Pros: (i) Multi-hop relations

(ii) Joint optimization of Seq2Seq and GNN
• Cons: (i) High computation cost
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Grounded text-enhanced NLG methods

48

M1: Retrieval-augmented NLG

• [Lewis et al. 2020 Neurips]

• [Wang et al. 2021 ACL]

M2: Background-based NLG

• [Qin et al. 2019 ACL]

• [Meng et al. 2020 AAAI]



Grounded text-enhanced NLG methods

• Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, In Neruips 2020
• Motivation: Large pre-trained LMs cannot easily expand or revise their memory, can’t 

straightforwardly provide insight into their predictions, and may produce “hallucinations”.

Figure: RAG combines a pre-trained retriever (DPR) with a pre-trained seq2seq model (BART) and fine-tune end-to-end.



Grounded text-enhanced NLG methods

• Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, In Neruips 2020
• Dataset: Trivial QA, MS-MARCO      Metric: Exact match (for ODQA); BLEU, ROUGE



Grounded text-enhanced NLG methods

• Retrieval Enhanced Model for Commonsense Generation, In ACL 2021
• Motivation: It is challenging to organize provided concepts into the most plausible 

scenario, avoid violation of commonsense.



Grounded text-enhanced NLG methods

• Retrieval Enhanced Model for Commonsense Generation, In ACL 2021
• Task: CommonGen Metric: BLEU, CIDEr, SPICE



Grounded text-enhanced NLG methods

• Retrieval Enhanced Model for Commonsense Generation, In ACL 2021
• Task: CommonGen Metric: BLEU, CIDEr, SPICE

Figure: An example of sentences generated based on the retrieved sentences.



Grounded text-enhanced NLG methods

• Conversing by Reading: Contentful Neural Conversation with On-demand Machine 
Reading, In ACL 2019

• Task: Dialogue system

Figure: Users discussing a topic defined by a Wikipedia article. In this real-world example from our Reddit dataset, 
information needed to ground responses is distributed throughout the source document.



Grounded text-enhanced NLG methods

• Conversing by Reading: Contentful Neural Conversation with On-demand Machine 
Reading, In ACL 2019

Figure: Model Architecture for Response Generation with on-demand Machine Reading



Grounded text-enhanced NLG methods

• Conversing by Reading: Contentful Neural Conversation with On-demand Machine 
Reading, In ACL 2019
• Dataset: Reddit        Metric: NIST; BLEU; F1; Distinct-k …

Table: Automatic Evaluation results on Reddit dataset.



Grounded text-enhanced NLG methods

Table: Tasks, datasets and evidence sources used in retrieve-then-generate papers.

challe
nging


