

EMNLP 2021 Tutorial

Knowledge-Enriched Natural Language Generation

Wenhao Yu¹,

Meng Jiang¹,

Zhiting Hu²,

Qingyun Wang³,

Heng Ji³,

Nazneen Rajani⁴

1 University of Notre Dame 2 University of California San Diego 3 University of Illinois at Urbana-Champaign 4 Salesforce Research

General Methods of Knowledge + NLG

This part: General principles and methodologies for integrating knowledge into NLG

Overview:

- Knowledge-enhanced model architectures
 - Attention/copy mechanisms
 - Graph neural models
- Knowledge-enhanced learning
 - Auxiliary loss/tasks
 - Reinforcement learning with knowledge-informed rewards
 - Learning with knowledge constraints
- Knowledge-enhanced inference
 - Steered decoding
 - Prompts

Knowledge-enhanced inference

- Integrate knowledge during the text decoding process
- Can be applied to pretrained language models (e.g., GPT-2/3, T5) for knowledge-enhanced NLG

- Guide the decoding by changing the generation distribution
- Controlling LMs with another (relatively smaller) model trained for desired attributes
- Examples: PPLM, GeDi, DeLorean, DExperts, FUDGE, MoFE

• Use a single-layer discriminative classifier as the guide

Dathathri et al., "Plug and Play Language Models (PPLM)"

- Use another LM as a generative discriminator to guide decoding
- Examples: GeDi (Krause et al., '20) and FUDGE (Yang et al., '21)

Use two LMs to constrain decoding

Using RL to constrain decoding for factual consistency

Using text to constrain decoding

- Guide the decoding by changing the generation distribution
- Low parameter alternative to finetuning LMs

3 broad directions to infer knowledge using prompts:

- 1. zero-shot, eg: "The capital of Canada is [MASK]"
- 2. few-shot, eg: "The capital of France is Paris. The capital of Canada is [MASK]"
- 3. with additional context, eg: "Ottawa sits on the Ottawa River at the border between Quebec and Ontario. The capital of Canada is [MASK]."

Zero-shot setting

Few-shot setting/ via demonstration

Gao et al., 2021

With additional context

Conclusion

This part: General principles and methodologies for integrating knowledge into NLG

- Knowledge-enhanced model architectures
- Knowledge-enhanced learning
- Knowledge-enhanced inference
 - Steered decoding
 - Prompts