

EMNLP 2021 Tutorial

Knowledge-Enriched Natural Language Generation

Wenhao Yu¹, Meng Jiang¹, Zhiting Hu², Qingyun Wang³, Heng Ji³, Nazneen Rajani⁴
1 University of Notre Dame 2 University of California San Diego
3 University of Illinois at Urbana-Champaign 4 Salesforce Research

This part: General principles and methodologies for integrating knowledge into NLG

Next part (by Wenhao): Concrete examples and instantiations of the general methods in recent NLG works

This part: General principles and methodologies for integrating knowledge into NLG

Overview:

- Knowledge-enhanced model architectures
 - Attention/copy mechanisms
 - Graph neural models
- Knowledge-enhanced learning
 - Auxiliary loss/tasks
 - Reinforcement learning with knowledge-informed rewards
 - Learning with knowledge **constraints**
- Knowledge-enhanced inference
 - Steered decoding
 - Prompts

Knowledge-enhanced model architectures

Bake knowledge into the model through specific architectures

Figure courtesy: Olah & Carter,

Figure courtesy: Olah & Carter,

Figure courtesy: Olah & Carter,

Different alignment_scores functions

Name	Alignment score function	Citation
Content-base attention	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}[\boldsymbol{s}_t, \boldsymbol{h}_i]$	Graves2014
Additive(*)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$	Bahdanau2015
Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	score $(s_t, h_i) = s_t^\top \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\operatorname{score}(s_t, \boldsymbol{h}_i) = s_t^{T} \boldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	score(s_t , h_i) = $\frac{s_t^T h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

- Different alignment_scores functions
- Self attention: Query = Keys = Values
- Multi-head attention (Transformers)
- Kernelized attention

•

Model $X \longrightarrow$ Input text Output text Probability of choosing Probability of choosing the **generation mode** the **copy mode** $p(y_t) = p_m \cdot p_{gen}(y_t) + (1 - p_m) \cdot p_{copy}(y_t)$

Copy relevant information to the output text

Probability of generating the token y_t

Probability of copying the token y_t from knowledge / input

Knowledge

Attending to & copying info from knowledge

Y

Architectures (II): Copy/Pointing Mechanisms

Architectures (III): Graph Neural Models

- Representation and reasoning over graphstructured knowledge
- Bridge the gap between graph representation and text generation

Knowledge graphs (KGs)

compounds

embassy

d-obj

the

Architectures (III): Graph Neural Models

Main idea: Pass massages between nodes to refine node (and possibly edge) representations

Architectures (III): Graph Neural Models

Main idea: Pass massages between nodes to refine node (and possibly edge) representations

Input

Slide courtesy: Thomas Kipf

• •

This part: General principles and methodologies for integrating knowledge into NLG

Overview:

- Knowledge-enhanced model architectures
 - Attention/copy mechanisms
 - Graph neural models
- Knowledge-enhanced learning
 - Auxiliary loss/tasks
 - Reinforcement learning with knowledge-informed rewards
 - Learning with knowledge **constraints**
- Knowledge-enhanced inference
 - Steered decoding
 - Prompts

Knowledge-enhanced learning

- Design knowledge-informed learning problems
 - Auxiliary tasks
 - Reward
 - Constraints
- Model is trained to solve the problems
 - So that knowledge information is absorbed into model parameters
- Often agnostic to model architectures:
 - Thus, can combine the learning methods with any knowledge-enhanced architectures we've just seen

Learning (I): Auxiliary tasks

- "Knowledge as target"
 - Create learning targets (labels) based on the knowledge
 - Use the targets to supervise the training of the model

Learning (I): Auxiliary tasks

(1) Combine the auxiliary tasks with standard text generation task

- Lead to a *multi-task* learning paradigm
- Ex: dialog generation

Learning (I): Auxiliary tasks

Knowledge sources

(1) Combine the auxiliary tasks with standard text generation task

• Lead to a *multi-task* learning paradigm

(2) The auxiliary tasks provide direct supervision for the text generation task

- Lead to a weakly-supervised learning paradigm
- Ex: aspect-based summarization

Aspect: Delta variant **Summary:** The highly contagious delta variant is surging ... **Coronavirus daily news** training WikipediA **Aspect:** Vaccination The Free Encyclopedia (aspect, summary Summary: The statewide vaccine training pairs (noisy mandate for ... Aspect: Travel **Summary:** the CDC reinstated its ConceptNet highest travel advisory tier

Tan et al., "Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised

Learning (II): Reinforcement learning

- "Knowledge as reward"
 - Knowledge-informed reward function evaluates the quality of generation
 - Model is trained to maximize the reward using reinforcement learning:
 - Policy gradient, (Soft) Q-learning, etc.
- Ex: Learning to generate prompts for topic-controllable generation

Han et al., "Text Generation with Efficient (Soft) Q-Learning"

Learning (III): Learning with knowledge constraints

- "Knowledge as constraints"
 - Impose knowledge-informed constraints on the NLG training objective
 - Model is trained to optimize the objective subject to the constraints
- Methods: posterior regularization, constraint-driven learning, integer linear programming, ...
 - Posterior regularization:

Standard Minimize KL divergence: encourage model p_{θ} to stay close to auxiliary distribution qNLG objective $\min_{\substack{\theta, q, \xi \geq 0}} \mathcal{L}(\theta) + \text{KL}(q(\mathbf{y}|\mathbf{x})|| p_{\theta}(\mathbf{y}|\mathbf{x})) + ||\xi||_{b}$ $s.t. \mathbb{E}_{q}[f(\mathbf{x}, \mathbf{y})] \leq \xi - - \text{Impose constraints on } q$ Solve with an EM-style procedure

Learning (III): Learning with knowledge constraints

- "Knowledge as constraints"
 - Impose knowledge-informed constraints on the NLG training objective
 - Model is trained to optimize the objective subject to the constraints
- Methods: posterior regularization, constraint-driven learning, integer linear programming, ...
 - Posterior regularization
 - Ex:

This part: General principles and methodologies for integrating knowledge into NLG

Overview:

- Knowledge-enhanced model architectures
 - Attention/copy mechanisms
 - Graph neural models
- Knowledge-enhanced learning
 - Auxiliary loss/tasks
 - Reinforcement learning with knowledge-informed rewards
 - Learning with knowledge **constraints**
- Knowledge-enhanced inference
 - Steered decoding
 - Prompts

- Integrate knowledge during the text decoding process
- Can be applied to pretrained language models (e.g., GPT-2/3, T5) for knowledge-enhanced NLG

• Guide the decoding by changing the generation distribution

• TODO: PPLM, GeDi, DeLorean

• Guide the decoding by changing the generation distribution

